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Lattice parameter, electronic structure, mechanical and thermodynamic properties of ThN are systemat-
ically studied using the projector-augmented-wave method and the generalized gradient approximation
based on the density functional theory. The calculated electronic structure indicates the important con-
tributions of Th 6d and 5f states to the Fermi-level electron occupation. Through Bader analysis it is found
that the effective valencies in ThN can be represented as Th+1.82 N�1.82. Elastic constant calculations show
that ThN is mechanically stable and elastically anisotropic. Furthermore, the melting curve of ThN is pre-
sented up to 120 GPa. Based on the phonon dispersion data, our calculated specific heat capacities includ-
ing both lattice and conduction electron contributions agree well with experimental results in a wide
range of temperature.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Actinide nitrides have been extensively studied in experiments
in connection with their potential applications in the Generation-
IV reactors [1]. These reactors raise a number of concerns
surrounding the issue of nuclear power. The effective utilization
of nuclear power will require continued improvements in nuclear
technology, particularly related to safety and efficiency. Nowadays,
except for the oxide based fuels, the nitride fuels also participate in
the competition to become the alternative materials for their supe-
rior thermophysical properties, such as high melting point, high
thermal conductivity, and high density, as well as the good com-
patibility with the coolant (liquid sodium) [2–5]. Since the high
density of nitride fuels can bring out more excess neutrons, there-
fore, they have a higher potential to transmute the long lived
fission products. As for reprocessing feasibility, actinide nitrides
also appear to be a compromise between oxide and metal fuels.
For the sake of better understanding of the behavior of these mate-
rials under irradiation, their accurate electronic structure descrip-
tion by first-principles methods is necessary. Actinides form an
isostructural series of mononitrides with a simple rock-salt type
structure and a complete solid solubility in the whole composition
range. By virtue of the prospective use of actinide mononitrides as
ll rights reserved.

d Physics and Computational
ina. Tel.: +86 10 82305133.
).
advanced fuel materials, it is of crucial importance to know their
thermal properties for modeling the fuel behavior at elevated
temperatures. The thermodynamic properties such as standard
enthalpies of formation and heat capacities are essential to predict
the phase stability including the melting points.

Despite the abundant research on actinide mononitride, how-
ever, for ThN compound, relatively little is known regarding its
chemical bonding, mechanical properties, high pressure melting
points, and phonon dispersion. In the early theoretical studies, only
the lattice parameters and bulk modulus of the actinide nitride ser-
ies have been calculated by utilizing linear muffin-tin orbital
(LMTO) method [6]. Although the electronic properties and chem-
ical bonding in ThN have been recently calculated by Shein et al.
[7] through the full-potential linear-augmented-plane-wave
(FLAPW) method, the study of the bonding nature of Th–N ionic/
covalent character is still lacking. These facts, as a consequence, in-
hibit the fundamental understanding of thorium mononitride from
a basic science point of view. Motivated by these observations, in
this paper, we present a first-principles density functional theory
(DFT) study by calculating the structural, electronic, mechanical,
and thermodynamic properties of ThN. As will be shown, a preli-
minary study of some bulk properties of ThN indicates that the
conventional generalized gradient approximation (GGA) for the ex-
change-correlation potential in DFT can give satisfactory results
when compared to experimental data and thus does not require
other treatments beyond LDA/GGA such as LDA/GGA+U, which
are indispensable in the uranium and plutonium compounds for
stronger localization and correlation of their 5f electrons.
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Table 1
Strains used to calculate the elastic constants of NaCl-type ThN.

Strains Parameters (unlisted: eij = 0) 1
V
@2EðV ;dÞ
@d2

���
d¼0

1 e11 = d C11 � P
2 e11 = e22 = d 2 (C11 + C12 � P)
3 e13 = e31 = d 4C44 � 2P
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After optimizing the ground state structure of ThN, we
performed the calculation of density of states (DOS) and Bader
analysis [8] for ThN. The results indicate that the Th 5f states are
involved in the formation of Th–N and Th–Th interatomic bonds
and about 1.82 electrons transfer from each Th atom to its sur-
rounding N atoms. Through the mechanical analysis, we find that
NaCl-style ThN is mechanically stable and elastically anisotropic.
In order to predict the melting curve, we calculated the elastic con-
stants, bulk modulus and shear modulus from ambient pressure to
117 GPa. Since we have known that ThN melts congruently at
2790 ± 30� under a nitrogen pressure somewhat less than 1 atm
[9], ThN can be ranked as a refractory material. Utilizing the Linde-
mann melting criterion [10], we got the melting curve versus pres-
sure. The melting points were enhanced by about 2100 K from
ambient pressure to 117 GPa. Our predicted results indicate that
ThN is able to withstand temperatures above 5100 K without
chemical change and physical destruction under high pressures.
The calculated phonon dispersion confirms the dynamic stability
for ThN. Based on our phonon dispersion data, the lattice vibration
energy, thermal expansion, and specific heat are obtained by using
the quasiharmonic approximation (QHA). Our calculated specific
heat, including both lattice and conduction electron contributions,
agrees well with experimental results at T < 1500 K domain.

The rest of this paper is organized as follows: The first-princi-
ples computational details are briefly introduced in Section 2.
The calculated results are presented and discussed in Section 3.
Finally, a summary of this work is given in Section 4.

2. Computational method

The first-principles total energy calculations were carried out
using the Vienna ab initio simulations package (VASP) [11] with
the projected-augmented-wave (PAW) pseudopotentials [12] and
plane waves. The exchange and correlation effects were described
within GGA [13]. The thorium 6s27s26p66d15f1 and nitrogen 2s22p3

electrons were treated as valence electrons. The electron wave
function was expanded in plane waves up to a cutoff energy of
500 eV. We have performed numerous convergence tests on deter-
mining the influence of the k-point mesh on the total energy. The
Monkhorst–Pack [14] 11 � 11 � 11 mesh was used in Brillouin
zone (BZ) integration, which turns to be sufficient to get results
converged to less than 1.0 � 10�4 eV/atom. The corresponding
electronic density of states (DOS) was obtained with 19 � 19 �
19 k-point mesh.

It is known that the elastic constants are defined by means of a
Taylor expansion of the total energy, E(V,d), for the system with
respect to a small strain d on the equilibrium cell according to
the following law [15]:

EðV ; dÞ ¼ EðV0;0Þ þ V0

X
i

sinidi þ
1
2

X
ij

Cijdinjdj

" #
; ð1Þ

where E(V0,0) and V0 are the total energy and volume of the equi-
librium cell without strains, respectively, si is an element in the
stress tensor, and ni is a factor presenting to take care of the Voigt
index [16].

To calculate the elastic constants of rock-salt structure ThN, we
applied three independent strains. The parametrizations that we
used for these strains are given in Table 1. We calculated the total
energy of each strain for a number of small values of d. These ener-
gies were then fitted to a polynomial in d and the curvatures of the
energy versus d curve were obtained for using in Eq. (1). The elastic
constants are closely related to many physical properties of solids,
such as the Debye temperature, specific heat, melting temperature,
and Grüneisen parameter. At low temperatures, the vibrational
excitations arise solely from acoustic vibrations. Hence, the Debye
temperature calculated from elastic constants is the same as that
determined from specific heat measurements at low temperature.
The relation between the Debye temperature (hD) and the average
elastic wave velocity (vm) is

hD ¼
h
kB

3n
4pX

� �1=3

vm; ð2Þ

where h and kB are Planck and Boltzmann constants, respectively, n
is the number of atoms in the molecule and X is molecular volume.
The average elastic wave velocity in the polycrystalline materials is
approximately given by

vm ¼
1
3

2
v3

t
þ 1

v3
l

� �� ��1=3

; ð3Þ

where v t ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
(q is the density) and v l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Bþ 4GÞ=3q

p
are the

transverse and longitudinal elastic wave velocities, respectively. B
and G represent the bulk modulus and shear modulus, respectively.

After obtaining the Debye temperature at various pressures, we
performed the melting curve calculation from Debye temperatures.
The calculation was based on the Lindemann melting criterion
[10]. This model is based on the harmonic approximation, predict-
ing that melting will occur when the ratio of the root mean square
(rms) atomic displacement to the mean interatomic distance
reaches a certain value (generally about 1/8). It can be expressed
as follows:

Tm ¼ CV2=3hD; ð4Þ

where Tm is the melting point, C is a constant, and V is atomic
volume.

3. Results and discussion

3.1. Atomic and electronic structures

In order to examine the possibility of magnetism in ThN, the
spin-polarized calculations by assuming initial ferromagnetic state
were carried out. We found that the ground state for ThN is non-
magnetic, without any localized atomic magnetic moments, the re-
sult of which is in agreement with observed [3] paramagnetism in
ThN. In this paper, the theoretical equilibrium volume V0, bulk
modulus B and the pressure derivative B0 are obtained by fitting
the third-order Brich–Murnaghan equation of state (BMEOS) [17].
Our calculated lattice parameter for the cubic unit cell of ThN is
a0 = 0.518 nm, which is in good accordance with the experimental
data of 0.516 nm [18]. The bulk modulus B and its pressure deriv-
ative B0 obtained by fitting the BMEOS are 176.1 GPa and 3.9,
respectively, which are also consistent with the corresponding
experimental values of 175 GPa and 4.0 [19]. The calculated B for
ThN is much larger than that of metallic a-Th (about 60–62 GPa
[20]), i.e., a pronounced increase of structural rigidity from metal
to nitride due to the direct Th–N bonding formation, which occurs
as well as for other NaCl-type metal mononitrides.

The total DOS and site-projected orbit-resolved DOS (PDOS) of
ThN are displayed in Fig. 1. Evidently, the conduction band is
strongly marked by Th 5f states, with a little bit degrees of Th 6d
and N 2p states. The valence band ranging from �5.5 eV to �1



Fig. 1. Total and site-projected orbital-resolved electronic densities of states for
ThN at equilibrium. The Fermi energy is set at zero.

Table 2
Calculated effective atomic charge and volumes according to Bader partitioning of
AnN (An = Th,U,Pu).

Compound QB(A) (e) QB(N) (e) VB(A) (10�3 nm3) VB(N) (10�3 nm3)

ThN +1.82 �1.82 20.924 13.848
UN +1.71 �1.71 18.301 11.581
PuN +1.59 �1.59 17.713 11.757
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eV is of mixed Th d/f and N p character. Near the Fermi level there
are comparable contributions of Th 6d and 5f states, whereas the
contributions of N 2p states become much smaller. Due to the ob-
servable d and f states near the Fermi energy, ThN exhibits a clear
metallic behavior.

In order to further analyze the chemical bonding nature, we dis-
play in Fig. 2 the charge distribution in ThN (100) plane and list in
Table 2 the Bader effective charges. We find the near-spherical dis-
tribution of electron density around thorium and nitrogen atoms,
with a rather small density value between them. This is typical
for crystals with the rock-salt structure having ionic bonding due
to the charge transfer from metal to non-metal atoms. Since Bader
analysis [8] is an effective tool for studying the topology of the
electron density and suitable for discussing the ionic/covalent
character of a compound, we also performed the Bader effective
charge calculation for ThN. For this we adopted 300 � 300 � 300
charge density grids, and the spacing between adjacent grid points
was 1.72 � 10�3 nm. The calculated effective atomic valence
charges and volumes are listed in Table 2 together with the UN
and PuN results for comparison. Our results show that about
1.82 electrons transfer from each Th atom to its neighboring N
atoms. The effective valency in ThN then can be represented as
Th+1.82 N�1.82, while UN is U+1.71 N�1.71 [21] and PuN is Pu+1.59

N�1.59, indicating that the ionicity in ThN is somewhat stronger
than that in UN and PuN, as shown in Table 2.
3.2. Mechanical properties

For the cubic structure, there are three independent elastic con-
stants C11, C12, and C44. Under pressure P, the relation between the
Fig. 2. Valence charge density of ThN in (100) plane.
elastic constants Cij and the bulk modulus B can be expressed as
follows [22]:

C11 þ 2C12 ¼ 3B� P: ð5Þ

At zero pressure, the well-known expressions of Voigt and Reuss
[16,23,24] bulk moduli can be re-derived. Under the Voigt approx-
imation, the effective shear modulus GV for cubic phase can be ex-
pressed as GV ¼ C11�C12þ3C44

5 , while with Reuss approximation the
shear modulus can be expressed as, GR ¼ 5ðC11�C12ÞC44

4C44þ3ðC11�C12Þ
. Hill [25]

proved that the Voigt and Reuss equations represent upper and
lower limits of the true polycrystalline constants, and recom-
mended that the shear modulus G is an arithmetic average of Voigt
and Reuss approximations, i.e., G ¼ 1

2 ðGR þ GV Þ. From that, the
Young’s modulus E and Poisson’s ratio m can be given by E ¼ 9BG

3BþG

and m ¼ 3B�2G
2ð3BþGÞ. Using the above functions, the calculated bulk mod-

ulus B, the pressure derivative of bulk modulus B0, shear modulus G,
Young’s modulus E, and Poisson’s ratio m of ThN are given in Table 3.
For comparison, the experimental data from Ref. [19] and the theo-
retical FLAPW–GGA results in Ref. [26] are also presented. As can be
seen from Table 3, our calculated C12 and C44 are in agreement with
the FLAPW–GGA results, while C11 = 334.8 GPa is smaller than the
corresponding data 396.6 GPa. At ground state, the bulk modulus
B derived from elastic constants is 179.4 GPa, which is well consis-
tent with that obtained by BMEOS fitting. This value is very close to
the experimental data of 175 GPa [19] but smaller than the FLAPW–
GGA result of 199.9 GPa. The pressure derivative of the bulk modu-
lus B0 is 3.9, which is also in good accordance with the experimental
data of 4.0. The calculated Poisson’s ratio m = 0.286 is consistent
with the FLAPW–GGA result. With a cubic system, the elastic
anisotropy factor is given by A ¼ 2C44

C11�C12
. Since microcracks in mate-

rials can be easily induced by significant elastic anisotropy, it is
important to evaluate anisotropic factors to understand their
mechanical durability. Our present value of A is equal to 0.64, indi-
cating that ThN is elastically anisotropic. The factor A is equal to 1.0
for isotropic crystals while a value different from 1.0 indicates elas-
tic anisotropy.

Besides, Fig. 3a shows the pressure dependence of the elastic
constants, bulk modulus B, and shear modulus G. One can clearly
see that the elastic constants all linearly increase with pressure.
The value of C11, C12 and C44 are enhanced by 705 GPa, 27 GPa
and 51 GPa, respectively, from 0 GPa to 117 GPa. These elastic con-
stants satisfy the generalized elastic stability criteria for cubic crys-
tals under pressure, i.e., eC11 > jeC12j; eC 11 þ 2jeC12j > 0, eC44 > 0,
where eCii ¼ Cii � P (i = 1,4) and eC12 ¼ C12 þ P. The dependence of
bulk modulus B and shear modulus G on pressure also linearly in-
crease with pressure. These pressure dependence of elastic con-
stants will be used in calculating the Debye temperature, and
further predicting the melting temperatures at elevated pressures.

3.3. Melting curve of ThN

The melting curves of materials have great scientific and tech-
nological interest. To understand the transition between solid
and liquid phases of ThN at high pressures, we will use the Linde-
mann criterion [Eq. (4)] to calculate the melting curve. The Linde-
mann criterion will be used here as a single-parameter model and
the free constant C can be calculated from a single point. In order to



Table 3
Calculated elastic constants, elastic moduli, pressure derivative of the bulk modulus B0 , Poisson’s ratio t, and anisotropic factor A for ThN at 0 GPa. Except B0 , t and A, all other
values are in units of GPa.

Method C11 C12 C44 B B0 GV E t A

GGA 334.8 101.7 75.0 179.4 3.9 89.5 230.3 0.286 0.64
FLAPW–GGAa 396.6 101.5 79.9 199.9 102.4 262.5 0.281 0.54
Expt.b 175 4.0

a Ref. [26].
b Ref. [19].

Fig. 3. (a) Evolution with pressure of the ThN elastic constants, bulk modulus and shear modulus. (b) Evolution with pressure of the transverse elastic wave velocity vt,
longitudinal wave velocity vl, and the average wave velocity vm.
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perform the evolution of Tm, we should know the melting temper-
ature Tm at P = 0 GPa and the evolution of hD. On the one hand, we
have known that ThN melts congruently at 2790 ± 30� under a
nitrogen pressure somewhat less than 1 atm [9]. On the other
hand, using the above calculated elastic constants, we can derive
the value of transverse and longitudinal elastic wave velocities,
i.e., vt and vl, and then we can get the average wave velocity vm

by Eq. (3). From the relation between hD and vm [Eq. (2)], we can
finally get the value of hD. Fig. 3b shows the pressure dependence
of the elastic wave velocities. One can see that all the three wave
velocities increase with augmenting pressure. Through the study
of evolution of Debye temperature, we can calculate the melting
temperatures using the Lindemann criterion. As is shown in
Fig. 4, the melting points of ThN have been calculated from ambi-
ent pressure to 117 GPa. It can be seen that the melting tempera-
ture of ThN is increased by about 2100 K from ambient pressure
to 117 GPa.
Fig. 4. The melting temperature of ThN as a function of pressure.
3.4. Formation energy

The formation energy of a specific compound is defined as the
difference between the total energy of the compound and of its
constitutive elements. The composition reaction of ThN is as
follows:

Thþ 1
2

N2 ! ThN; ð6Þ

which yields the following expression for the formation energy:

Ef ðThNÞ ¼ EðThNÞ � ETh þ
1
2

EN2

� �
: ð7Þ

In order to calculate the formation energy Ef, the total energy of
ThN, a-Th and N2 dimer should be calculated. Density-functional
theory is known to overestimate the binding energy Eb of N2 dimer,
so it will result in an underestimation of the present reaction energy
via the EN2

term. However, this error can be remedied by shifting the
energy of N2 so as to give the experimental binding energy. The
experimental Eb of N2 is 9.9 eV [27]. In the GGA the Eb is overesti-
mated by about 0.7 eV/N2. The formation energy Ef is �2.14 eV/
atom with the correction in the EN2

term. This value is somewhat
higher than the experimentally measured enthalpy of formation
DfH = �1.81 eV/atom at room temperature [28]. Since the forma-
tion energy calculated here does not take into account the temper-
ature, it can only give insight into the stability of the compounds at
low temperatures.

3.5. Phonon dispersion curve

In calculating the phonon dispersion curves and the phonon
density of states, the Hellmann–Feynman theorem and the direct
method [29] are employed. For the BZ integration, the 3 � 3 � 3
Monkhorst–Pack k-point mesh is used for the 2 � 2 � 2 ThN
supercell which contains 64 atoms. In order to calculate the



Fig. 5. Calculated phonon dispersion curves (left panel) and corresponding
projected phonon DOS (right panel) for ThN.

Fig. 6. Dependence of the Helmholtz free energy F(T,V) on crystal volume at various
temperatures and the locus of the minimum of the free energy for ThN.

Fig. 7. Temperature dependence of the bulk modulus for ThN.
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Hellmann–Feynman forces, we displace two atoms (one Th and
one N atoms) from their equilibrium positions and the amplitude
of all the displacements is 0.003 nm. The calculated phonon disper-
sion curves along C–X–K–C–L directions is displayed in Fig. 5. For
rock-salt type ThN, there are only two atoms in its formula unit,
therefore, six phonon modes exist in the dispersion relations. The
projected phonon DOS for ThN is also plotted in Fig. 5. Because
of the fact that the thorium atom is heavier than the nitrogen atom,
the phonon DOS splits into two parts with an evident gap: one part
is in the range of 0–4 THz where the vibrations of thorium atoms
are dominant; the other part is in the domain of 8–11 THz where
the vibrations mainly come from nitrogen atoms. Our calculated
optical frequency at C is about 10.6 THz, and this value is very
close to the experimental value of 10.3 THz [18]. The phonon dis-
persion illustrates the stability of ThN, and further indicates that
our following thermodynamic calculations are reliable.

3.6. Thermodynamic properties

The Helmholtz free energy F in QHA is investigated as follows:

FðV ; TÞ ¼ EðVÞ þ FphðV ; TÞ þ FeleðV ; TÞ; ð8Þ

where E(V) stands for the ground-state cold energy, Fph(V,T) is the
phonon free energy at a given unit cell volume V, and Fele is electron
excitation energy. Under QHA, the Fph(V,T) can be calculated from
phonon DOS g(x) by

FphðV ; TÞ ¼ kBT
Z 1

0
gðxÞ ln 2 sinh

�hx
2kBT

� �� �
dx; ð9Þ

where x = x(V) depends on volume and thus Eq. (9) contains some
effect of anharmonics. Fele in Eq. (8) can be obtained from the energy
and entropy contributions, i.e., Eele � TSele. The electronic entropy
Sele is of the form

SeleðV ; TÞ ¼ �kB

Z
nðe;VÞ½f ln f þ ð1� f Þ lnð1� f Þ�de; ð10Þ

where n(e) is electronic DOS, and f is the Fermi-Dirac distribution.
While the energy Eele due to the electron excitations takes the fol-
lowing form:

EeleðV ; TÞ ¼
Z

nðe;VÞfede�
Z eF

nðe;VÞede; ð11Þ

where eF is the Fermi energy.
The calculated free energy F(V,T) curves of ThN for temperature

ranging from 0 up to 1500 K are shown in Fig. 6. The locus of the
equilibrium lattice parameters at different temperature T are also
presented. The equilibrium volume V(T) and the bulk modulus
B(T) are obtained by BMEOS fitting. Fig. 7 shows the temperature
dependence of the bulk modulus B. Clearly, the bulk modulus
B(T) decreases along with the increase of temperature. This kind
of temperature effect is very common for compounds and metals.
Besides, the specific heat at constant volume CV can be directly cal-
culated through

CV ¼
@F
@T

� �
V
¼ kB

Z 1

0
gðxÞ �hx

kBT

� �2 exp �hx
kBT

exp �hx
kBT � 1

� 	2 dx; ð12Þ

while the specific heat at constant pressure CP can be evaluated by
the thermodynamic relationship CP � CV ¼ a2

V ðTÞBðTÞVðTÞT , where
the isobaric thermal expansion coefficient can be calculated accord-
ing to the formula aV ðTÞ ¼ 1

V
@V
@T


 �
P
. Calculated CV and CP of ThN are

displayed in Fig. 8. For comparison, the experimental data from
Refs. [30,31] and the theoretical molecular dynamics (MD) results
by Adachi et al. [32] are also presented. In general, our calculated
values of CV and CP are both higher than the corresponding MD re-
sults up to 1500 K. However, our calculated CP, including both lat-
tice and conduction electron contributions, agrees well with
experimental results in a wide temperature domain with a tiny dis-
crepancy of 4 J/mol K at 1500 K.
4. Conclusion

In summary, we have performed systematic first-principles cal-
culations on the structural, electronic, mechanical, and thermody-
namic properties of ThN. Within the GGA method, the ground state



Fig. 8. Specific heat capacities of ThN. Experimental data from Refs. [30,31] and
theoretical results from Ref. [32] are also displayed for comparison.
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structure of ThN can be well reproduced. Our calculated lattice
constant is in good accordance with the experimental data, within
0.05% error. Calculated electronic density of states show the impor-
tant contributions of Th 6dand 5f states to the Fermi-level occupa-
tion. The Bader effective charges of ThN can be expressed as
Th+1.82N�1.82, which is indicated to be more ionic when compared
to UN and PuN. Mechanical analysis has been carried out, showing
that the rock-salt type ThN is mechanically stable in a wide range
of pressures. Also, we have presented the melting curve of ThN
from ambient pressure to 117 GPa by utilizing the Lindemann cri-
terion. The calculated phonon dispersion of ThN is stable, confirm-
ing the dynamic stability. Under the QHA method, our calculated
specific heat, including both lattice and conduction electron contri-
butions, agrees well with experimental results. We expect that
these calculated results will be useful for the application of tho-
rium nitrides in the Generation-IV reactor and nuclear industry.
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